

Machine Learning in Microcontrollers

DAY 5: Deploying Machine Learning Models

Sponsored by

11111111

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.

THE SPEAKER

Jacob Beningo

Visit 'Lecturer Profile'

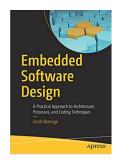
© 2023 Beningo Embedded Group, LLC. All Rights Reserved.

Beningo Embedded Group - President

Focus: Embedded Software Consulting and Training

Specializes in <u>creating</u> and <u>promoting</u> embedded software **excellence** in businesses around the world.

MicroPython

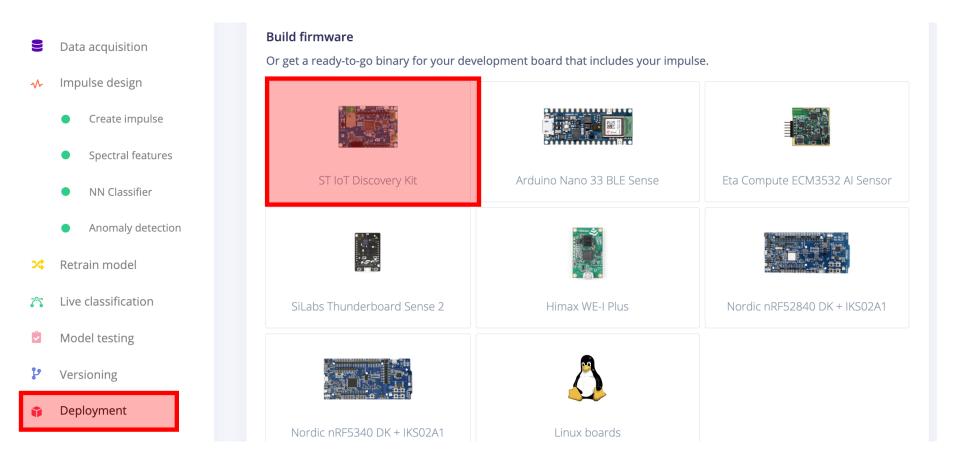

rojects

Blogs for:

- DesignNews.com
- Embedded.com
- EmbeddedRelated.com
- MLRelated.com

Course Sessions

- AI and ML for Microcontrollers
- Writing Embedded Software with ChatGPT and Open.Al
- Tools for Machine Learning in Microcontrollers
- Training a Model for the STM32
- Deploying Machine Learning Models



Preparing the Model for Export

Exporting an STM32 Binary

 $\ensuremath{\mathbb{C}}$ 2023 Beningo Embedded Group, LLC. All Rights Reserved.

Exporting an STM32 AI pack

🔁 EDGE IMPULSE		DEPLOYMENT (BENINGO-PROJECT-1)						
	Dashboard	Deploy your impulse						
	Devices		You can deploy your impulse to any device. This makes the model run without an internet connection, minimizes latency, and runs with minimal power consumption. Read more.					
	Data acquisition	Create library	Create library					
∿	Impulse design	-	Turn your impulse into optimized source code that you can run on any device.					
	Create impulse							
	• Spectral features	G		STREE				
	NN Classifier	C++ library	Arduino library	Cube.MX CMSIS-PACK				
	Anomaly detection		-					
*	Retrain model							
~	Live classification	WA	NVIDIA.					
Ċ	Model testing	WebAssembly	TensorRT library					
ş	Versioning	Build firmware						
Û	Deployment		elopment board that includes your impulse					

_____Sponsored By

Apply Optimization(s)

Available optimizations for NN Classifier

Quantized (int8) 📩	RAM USAGE	LATENCY	CONFUSION MATRIX				?
	1.5K	1 ms	87.8	7.0	0	0	5.2
Currently selected			0	99.2	0	0	0.8
	ROM USAGE	ACCURACY	0	0	100	0	0
This optimization is recommended for best	15.4K	95.68%	-	-	-	-	-
performance. Unoptimized (float32)	RAM USAGE	LATENCY	CONFUSIO	N MATRIX			(?)
	1.5K	1 ms	87.6	6.6	0	0	5.8
Click to select			0	100	0	0	0
	ROM USAGE	ACCURACY	0	0	100	0	0
	17.7K	95.88%	-	-	-	-	-

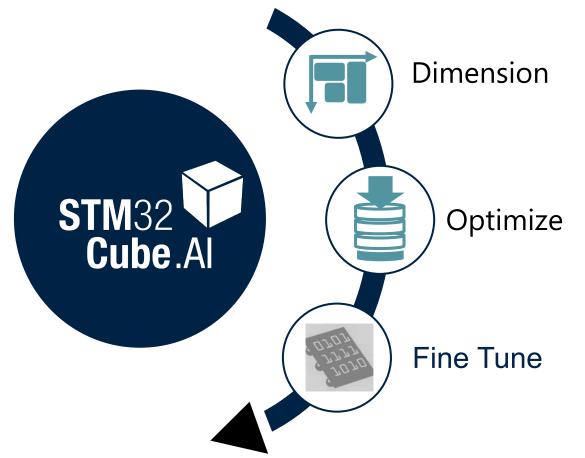
Estimate for Cortex-M4F 80MHz (ST IoT Discovery Kit)

5

1 ·

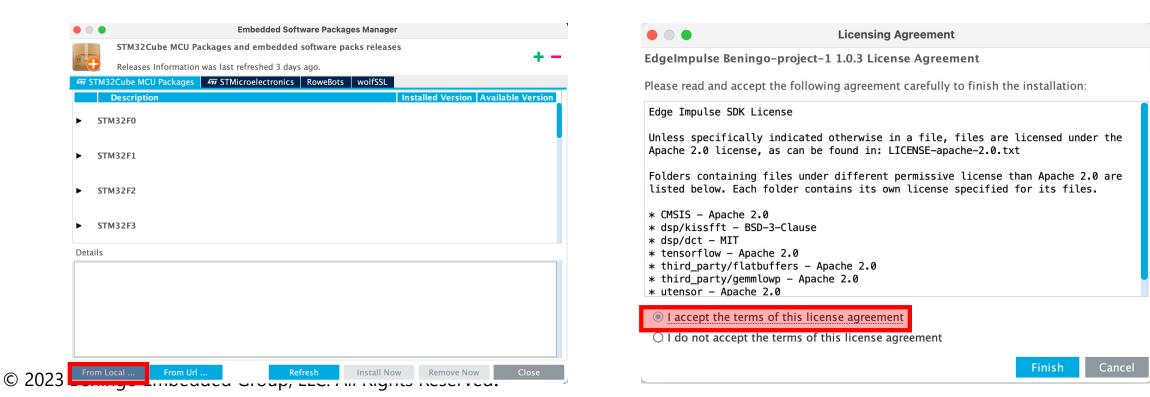
What method do you prefer for testing?

- Using the prebuilt binary
- Using the pack
- C++ library
- other



STM32Cube.AI Overview

- ✓ Quickly assess model footprint requirements
- ✓ Select and configure MCU in STM32CubeMX
- ✓ Review model layers in STM32Cube.AI
- ✓ Generate C-code for pre-trained model
- Support quantized models to reduce RAM, flash and latency with minimal loss of accuracy
- Use light run-time libraries
- Optimize for performance
- ✓ Optimize memory allocation
- ✓ Fine control of weight mapping
- ✓ Split between internal and external memory
- ✓ Update model without full FW update



12

Install Pack into STM32Mx Project

Help -> Manage Embedded Software Packages

Install Pack into STM32Mx Project

	Software Packs Component Selector							
Packs								
🗮 🗞 🚯	>							
Pack / Bundle /	Component	Status	Version	Selection	F.			
\sim EdgeImpulse.Beningo-	project–1	\odot	1.0.3					
✓ Beningo-project-1	MachineLearning	\odot	1.0.3					
Core		\odot						
> RoweBots.I-CUBE-UNI	SONRTOS		5.5.0-4 ڬ 😉	Install				
\vee STMicroelectronics.X–	CUBE-AI		6.0.0 ~					
> Artificial Intelligen	ce X-CUBE-AI		6.0.0					
> Device Application			6.0.0					

Install Pack into STM32Mx Project

Pinout & Configuration		Clock Configuration	Pro
		✓ Software Packs	Pinout
Q	٢	EdgeImpulse.Beningo-project-1.1.0.3 Mode a	nd Configuration
Categories A->Z		Mode	
System Core	>	Beningo-project-1 MachineLearning	
Analog	>		
Timers	>		
Connectivity	>		
Multimedia	>		
Security	>		
Computing	~		
÷	_	Configuration	
CRC DFSDM1		\rm Marning: This peripheral has no paramete	rs to be configured
Middleware	>		
Software Packs	~		
^	- I		
 Edgelmpulse.Beningo-project-1.1.0.3 			

Install Pack into STM32Mx Project

Home STM32L4	475VGTx – B–L475E–IC	DT01A1 STM32_ML_Gestu	re.ioc – Project Manager	\rangle	GENERATE CODE
Pinout & C	onfiguration	Clock Configuration	Proj	ect Manager	Tools
Project	Project Settings Project Name STM32_ML_Gesture Project Location /Users/beningo Application Structure		Modify, Build https://bit.ly		
Code Generator	Advanced Toolchain Folder Locati /Users/beningo/STM32 Toolchain / IDE STM32CubeIDE		rate the main() ✓ Generate Under Root		JZLJCJN

Running the Model

16

Running the Model

In a terminal, run the command: edge-impulse-run-impulse

```
Starting inferencing in 2 seconds...
Sampling... Storing in file name: /fs/device-classification.116
Predictions (DSP: 14 ms., Classification: 1 ms., Anomaly: 1 ms.):
    Circle: 0.99609
    Updown: 0.00000
    Wave: 0.00000
    anomaly score: -0.026
Finished inferencing, raw data is stored in '/fs/device-classification.116'. Use AT+UPLOADFILE to send back to Edge Impulse.
```

```
Starting inferencing in 2 seconds...
Sampling... Storing in file name: /fs/device-classification.121
Predictions (DSP: 15 ms., Classification: 0 ms., Anomaly: 2 ms.):
    Circle: 0.00000
    Updown: 0.00000
    Wave: 0.99609
    anomaly score: -0.132
```

Finished inferencing, raw data is stored in '/fs/device-classification.121'. Use AT+UPLOADFILE to send back to Edge Impulse.

Running the Model

Starting inferencing in 2 seconds... Sampling... Storing in file name: /fs/device-classification.118 Predictions (DSP: 15 ms., Classification: 0 ms., Anomaly: 2 ms.): Circle: 0.01172 Updown: 0.98828 wave: 0.00000 anomaly score: -0.141 Finished inferencing, raw data is stored in '/fs/device-classification.118'. Use AT+UPLOADFILE to send back to Edge Impulse. Starting inferencing in 2 seconds... Sampling... Storing in file name: /fs/device-classification.119 Predictions (DSP: 14 ms., Classification: 1 ms., Anomaly: 1 ms.): Circle: 0.21094 Updown: 0.78906 Wave: 0.00000 anomaly score: -0.164

Finished inferencing, raw data is stored in '/fs/device-classification.119'. Use AT+UPLOADFILE to send back to Edge Impulse.

What methods can be used to improve classifaction?

- Running average on the output
- Monitor the anomaly value
- Set a minimum classification percentage
- All the above
- Other

Going Further

20

Next Steps

- Connect the output to a PWM LED channel
- Setup a DAC and drive an output voltage
- Configure the rate at which the inference runs (frequency control)
- Try and compare the Keras model behavior
- Improve the training model to provide a more accurate sine wave

Going Further

https://bit.ly/3nf99EZ

Introduction to STM32Cube.AI - 1 Marketing introduction STMicroelectronics

Introduction to STM32Cube.AI - 2 Theory of AI STMicroelectronics

Introduction to STM32Cube.AI - 3 Out of the box lab
STMicroelectronics

Introduction to STM32Cube.AI - 4 NN Model creation using Keras

Introduction to STM32Cube.AI - 5 STM32Cube.AI labs

STMicroelectronics

AI and ML Resources

- Jacob's Al Blogs
- Jacob's CEC courses
- Jacob's ML Blogs
- Embedded Bytes Newsletter
 - <u>http://bit.ly/1BAHYXm</u>

www.beningo.com

CEC Continuing Education Center

Thank You

Sponsored by

1111111

