

Understanding Sensors and Data Analysis Using the Arduino Nano 33 BLE Sense

DAY 1: Arduino Nano 33 BLE Sense Overview

Sponsored by

Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Attendee Chat' by maximizing the chat widget in your dock.

Dr. Don Wilcher

Visit 'Lecturer Profile' in your console for more details.

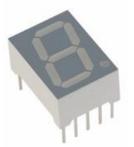
DigiKey

Course Kit and Materials

Solderless Breadboard

Adafruit Parts Pal Kit

I2C OLED Display

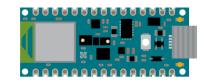

@ blox §

Arduino Nano 33 BLE Sense Board

https://www.amazon.com/HiLetgo-Serial-128X64-Display-Color/dp/B06XRBYJR8/ref=sr_1_6?crid=1VC2UTZ2P8NWF&keywords=i2c%2Boled&qid=1700192985&sprefix=l2C%2B%2Caps%2C108&sr=8-6&th=1

7 Segment LED Display, Common Cathode

Agenda:


- What is an Arduino Nano 33 BLE Sense?
 - a) Description
 - b) Functional Overview
- nRF52840 System on Chip (SoC)
 - a) Block Diagram
 - b) Core Components
 - c) Bluetooth Low Energy (LE)
- Setting up an Arduino Nano 33 BLE Sense Development Environment (Mini Hands-On Activity)
- Lab: Pushbutton-Alternate Blink Controller

Research Perspective

"The Internet of Things, which has been quietly building and evolving over the past decade, now impacts many aspects of society" (Chua & Storey, 2022).

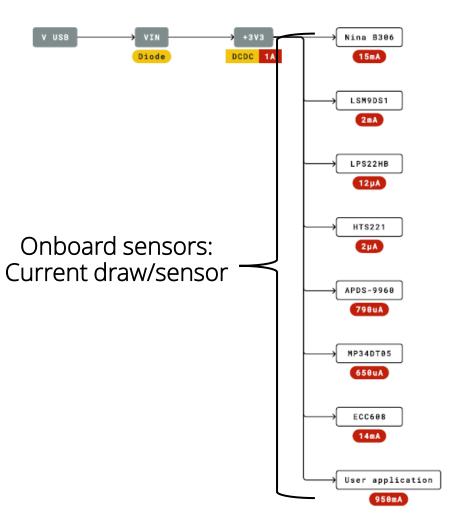
What is an Arduino Nano BLE Sense? Description

- An Internet of Things (IoT) platform to perform sensing and actuating in a physical environment.
- A Cortex M4F processor with an operating frequency of 64MHz.
- The Arduino Nano 33 BLE Sense board has the following items
 - a) Bluetooth Low Energy (BLE).
 - b) Eight onboard sensors
 - c) Analog and Digital port pins
- The Arduino Nano 33 BLE Sense board can be powered in 3 ways.
 - a) USB connector
 - b) Vin (header connector)
 - (header connector)

Question 1

The Arduino Nano 33 BLE Sense board can be powered in 4 ways.

- a) True
- b) False

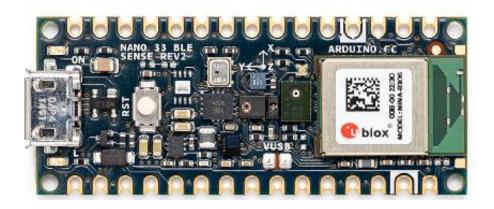


Functional Overview

Approaches to Powering Arduino Nano BLE Sense board

Legend:

Component

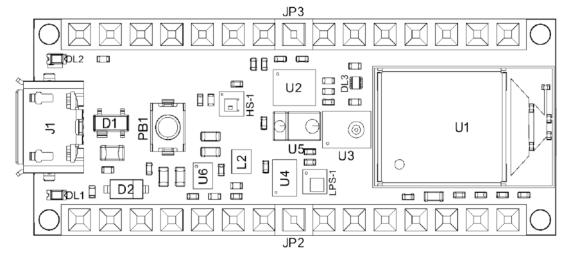


Functional Overview

Original Board

Version 2

Pictures courtesy of Arduino.cc



Functional Top of Board

Overview

Original Board

Ref.	Ref. Description		Description
U1	NINA-B306 Module Bluetooth® Low Energy 5.0 Module		MP2322GQH Step Down Converter
U2	2 LSM9DS1TR Sensor IMU		IT-1185AP1C-160G-GTR Push button
U3	MP34DT06JTR Mems Microphone		HTS221 Humidity Sensor
U4	ATECC608A Crypto chip	DL1	Led L

Ref.	Description	Ref.	Description
U5	APDS-9660 Ambient Module	DL2	Led Power

Bottom of Board

Overview

Functional

Original Board

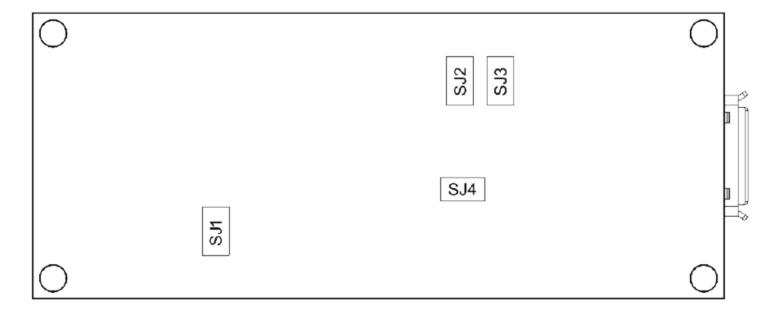


Illustration courtesy of Arduino.cc

Ref.	Description	Ref.	Description
SJ1	VUSB Jumper	SJ2	D7 Jumper
SJ3	3v3 Jumper	SJ4	D8 Jumper

Question 2

In reviewing slide 11, what sensor is referenced by the U3 designator?

- a) MP39DT06JTR Mems Microphone
- b) MP39DT60JTR Mems Microphone
- c) MP39DT06KTR Mems Microphone
- d) MP39DT05JTR Mems Microphone

Top of Board

Functional Overview

Version 2

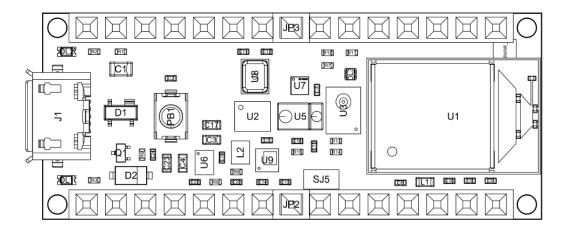


Illustration courtesy of Arduino.cc

Ref.	Description	Ref.	Description
U1	NINA-B306 Module Bluetooth® Low Energy 5.0 Module		MP2322GQH Step Down Converter
U2	BMI270 Sensor IMU		IT-1185AP1C-160G-GTR Push button
U3	3 MP34DT06JTR MEMS Microphone		HS3003 Humidity Sensor
U7	BMM150 Magnetometer IC		Led L
U5	APDS-9660 Ambient Module		Led Power
U9	LPS22HBTR Pressure Sensor IC		

Bottom of Board

Overview

Functional

Version 2

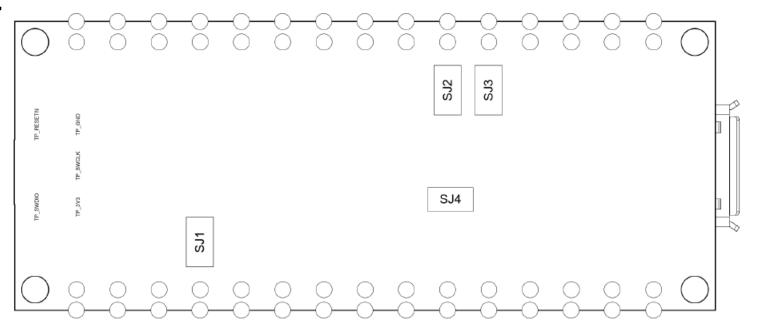
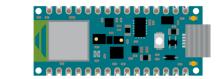


Illustration courtesy of Arduino.cc


Ref.	Description	Ref.	Description
SJ1	VUSB Jumper	SJ2	D7 Jumper
SJ3	3v3 Jumper	SJ4	D8 Jumper

Functional Overview

What is an Arduino Nano BLE Sense?...

Nano 33 BLE Sense vs Nano 33 BLE Sense Rev 2


Comparison Table

Feature	Arduino Nano 33 BLE Sense	Arduino Nano 33 BLE Sense Rev 2
Microcontroller nRF52840		nRF52840
CPU Core	ARM Cortex-M4	ARM Cortex-M4
Clock Speed	64 MHz	64 MHz
Flash Memory	1 MB	1 MB
SRAM	128 KB	128 KB

What is an Arduino Nano BLE Sense? . . . Functional

Nano 33 BLE Sense vs Nano 33 BLE Sense Rev 2

Comparison
Table

Overview

	Bluetooth	BLE 4.2	BLE 5.2
n	Sensors	Accelerometer, Gyroscope, Magnetometer, Microphone, Humidity and Temperature Sensor, Ambient Light Sensor, Pressure Sensor	Accelerometer, Gyroscope, Magnetometer, Microphone, Humidity and Temperature Sensor, Ambient Light Sensor, Pressure Sensor, Gesture Sensor
	Form Factor	Nano	Nano
	Pin Compatibility	Yes	Yes

Functional Overview

Nano 33 BLE Sense vs Nano 33 BLE Sense Rev 2

Comparisor	
Table	

ı ļ	Current Consumption 4 µA (deep sleep)		2 μA (deep sleep)	
	Operating Temperature Range	-20°C to +85°C	-40°C to +85°C	
	Applications	Wearables, IoT devices, Machine learning	Wearables, IoT devices, Machine learning	

Functional Overview

Pinout

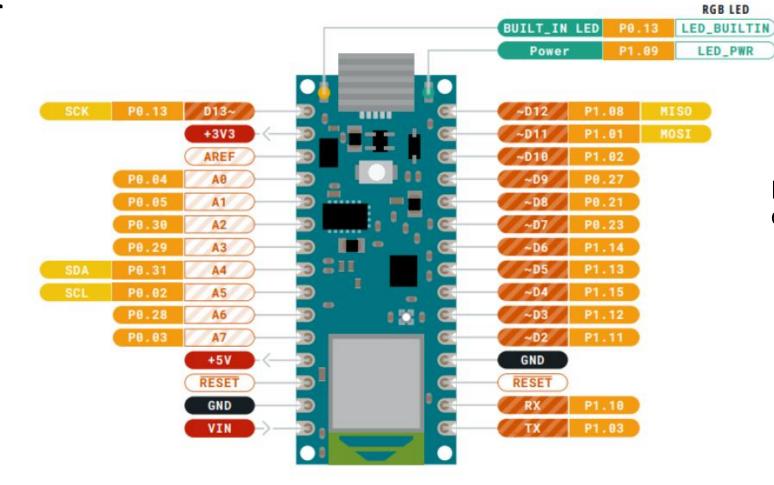
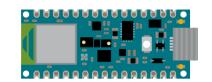
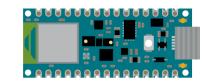



Diagram courtesy of Arduino.cc

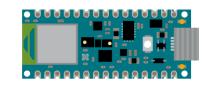
nRF52840 System on Chip (SoC)



- The nRF52840 is a high-performance, low-power, multi-protocol Bluetooth 5.4 SoC from Nordic Semiconductor.
- It is based on the ARM Cortex-M4 CPU with a floating-point unit (FPU) and offers a wide range of features listed next.
 - a) Bluetooth 5.4 support for Bluetooth Low Energy(BLE)
 - i. Bluetooth mesh
 - ii. Near Field Communication (NFC)
 - iii. Thread
 - iv. Zigbee
- An ARM Cortex –M4 Central Processing Unit (CPU) operating at 64MHz.
- Up to 512 KB of Flash memory and 64 KB of RAM.

nRF52840 System on Chip (SoC)...

- •Low power consumption, with a typical active current of 5.5 μA
- •A wide supply voltage range of 1.7 to 5.0 V
- •Support for a variety of development tools, including the nRF5 SDK and nRF Connect for Windows Desktop



Picture courtesy of Nordic Semiconductor

nRF5250 System on Chip (SoC)... What is a SoC?

- A system on a chip (SoC) is an integrated circuit (IC) that integrates most or all computer or other electronic system components onto a single chip.
- A SoC includes:
 - a) the central processing unit (CPU),
 - b) memory, input/output (I/O) ports,
 - c) and other peripherals.
- SoCs are commonly used in mobile devices, a)such as smartphones and tablets, as well
 - b) in other embedded systems like
 - i. wearables

Question 3

The nRF52840 is a high-performance, high-power, multi-protocol Bluetooth 5.4 SoC manufactured by Texas Instruments.


- a) True
- b) False

nRF52840 System on Chip (SoC)...

Block Diagram: Part 1

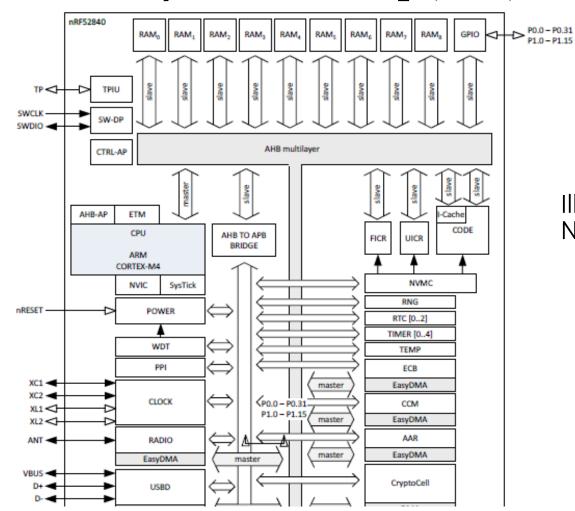
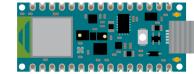
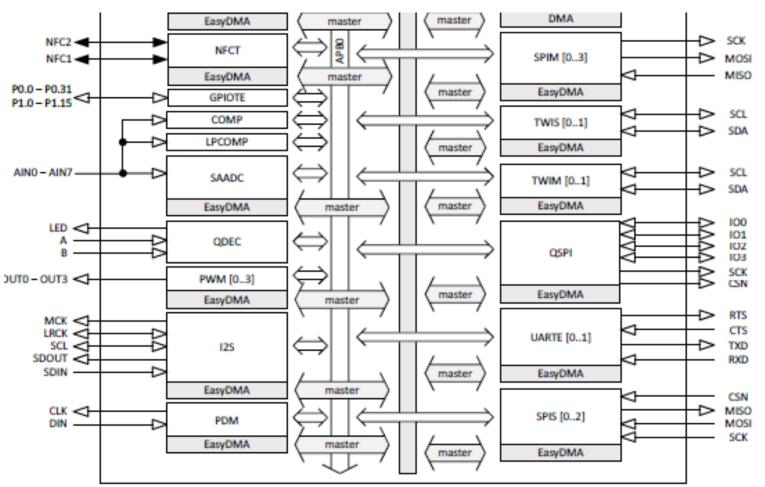
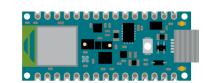



Illustration courtesy of Nordic Semiconductor



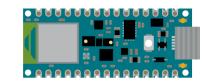
nRF52840 System on Chip (SoC)...

Block Diagram: Part 2


Illustration courtesy of Nordic Semiconductor

nRF5250 System on Chip (SoC)... Core Components

The core components of the nRF52840 are:

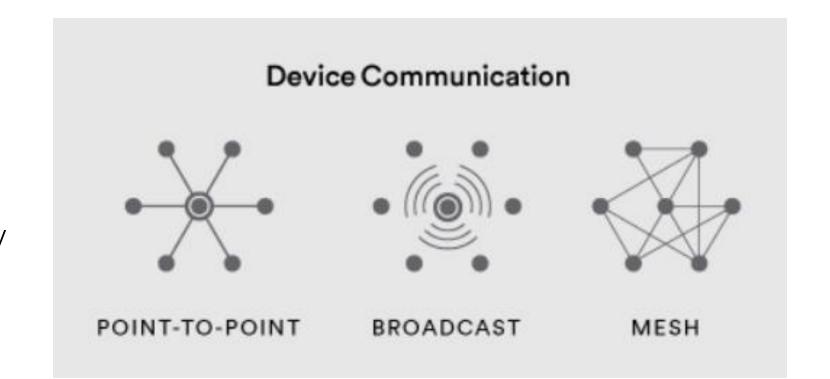
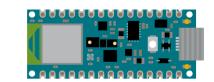

- •ARM Cortex-M4F CPU with FPU (Floating-Point Unit)
- •1 MB flash and 256kB RAM
- •48x GPIOs: GPIOs (General Purpose Input/Output).
- •A rich set of peripherals and interfaces: The nRF52840 includes many peripherals and interfaces, such as SPI, QSPI, PDM, I2S, and USB.
- •The nRF52840 is a very low-power SoC, with a typical active current of 5.5 μA.
- •A wide supply voltage range: The nRF52840 supports a wide supply voltage range of 1.7 to 5.0 V. This makes it compatible with a wide range of power sources.

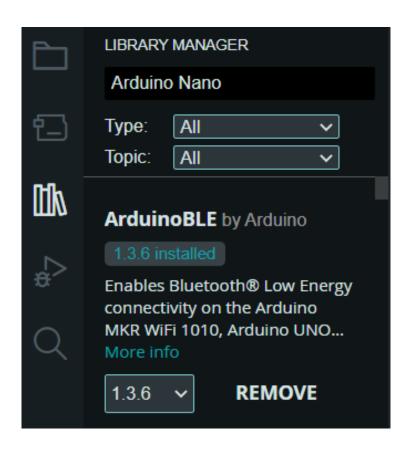
These core components make the nRF52840 a versatile and powerful SoC that is well-suited for a wide range of applications.

nRF52840 System on Chip (SoC)... Bluetooth Low Energy (LE)

- The Bluetooth Low Energy (LE) radio is designed for:
 - a) very low power operation.
 - b)Transmitting data over 40 channels in the 2.4GHz unlicensed ISM frequency band.
- The Bluetooth LE radio provides developers with tremendous flexibility to build products that meet the unique connectivity requirements of their market.
- •Bluetooth LE supports multiple communication topologies like:
 - a) point-to-point
 - b) broadcast
 - c) mesh
- Bluetooth technology can support the creation of reliable, large-scale device networks.

nRF52840 System on Chip (SoC)... Bluetooth Low Energy (LE)


Illustration courtesy of Bluetooth.com

Setting up an Arduino Nano 33 BLE Sense Development Environment...

Mini Hands-On Activity

Reference > Libraries > Arduinoble

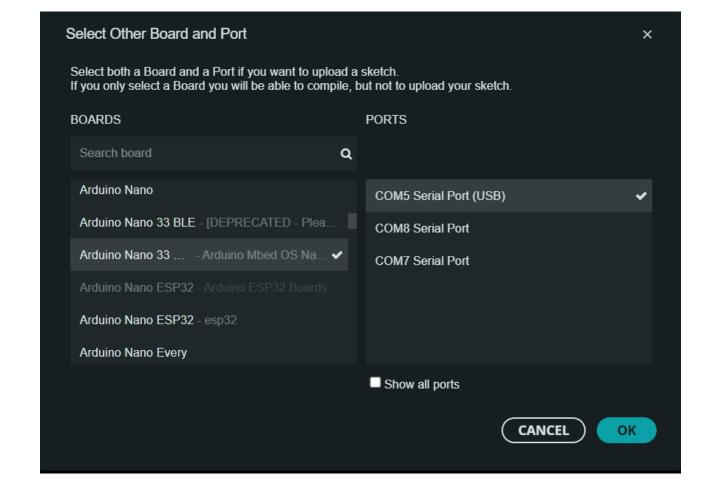
ArduinoBLE

Communication

Enables Bluetooth® Low Energy connectivity on the Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino Nano 33 IoT, Arduino Nano 33 BLE, Nicla Sense ME and UNO R4 WiFi.

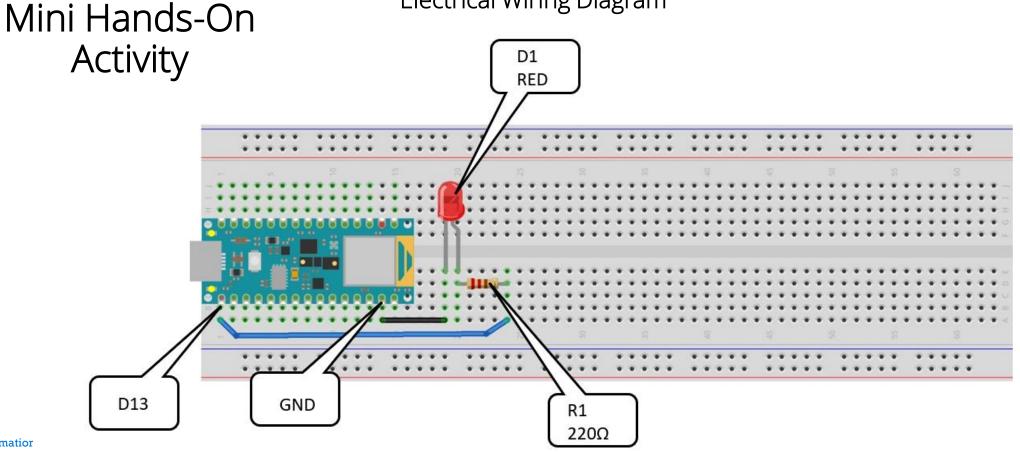
This library supports creating a Bluetooth® Low Energy peripheral & central mode.

29



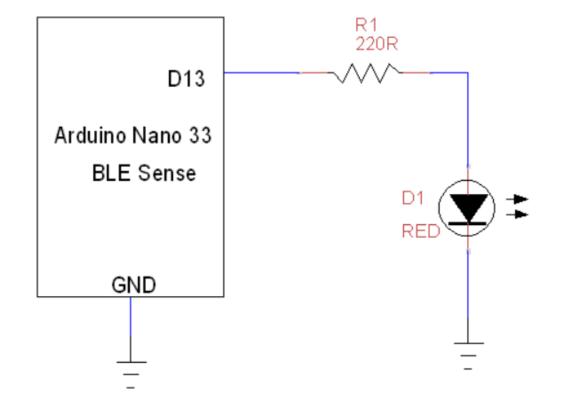
Setting up an Arduino Nano 33 BLE Sense Development Environment...

Mini Hands-On Activity



Setting up an Arduino Nano 33 BLE Sense Development Environment...

Arduino Nano 33 BLE Sense Blink Project **Electrical Wiring Diagram**



Setting up an Arduino Nano 33 BLE Sense Development Environment...

Arduino Nano 33 BLE Sense Blink Project Electronic Circuit Schematic Diagram

Mini Hands-On Activity

Question 4

In reviewing the Blink Project Electronic Circuit Schematic diagram on slide 32, D1 provides an extension for which onboard component?

- a) HS3003 Humidity Sensor
- b) LPS22HBTR Pressure Sensor
- c) LED Power
- d) LED L

Setting up an Arduino Nano 33 BLE Sense Development Environment...

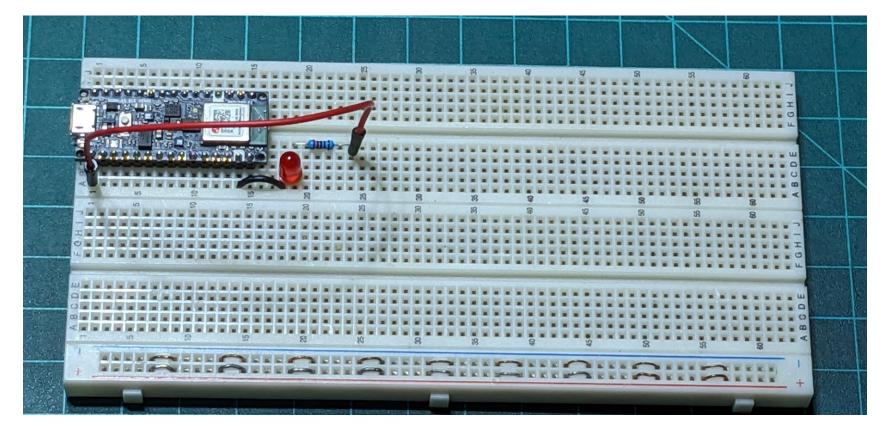
Mini Hands-On Activity

Upload the Blink code to the Arduino Nano 33 BLE Sense

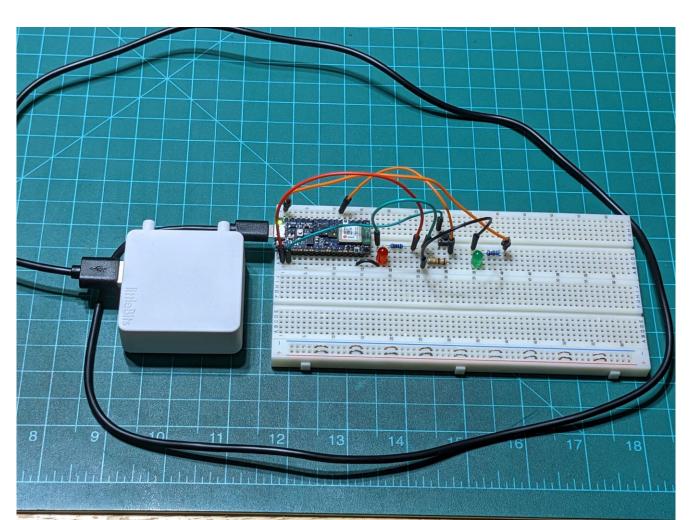
```
Blink | Arduino IDE 2.2.1
File Edit Sketch Tools Help

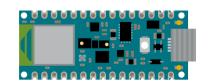
♣ Arduino Nano 33 BLE

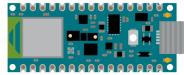
      Blink.ino
                This example code is in the public domain.
              // the setup function runs once when you press reset or power the board
              void setup() {
                // initialize digital pin LED BUILTIN as an output.
                pinMode(LED_BUILTIN, OUTPUT);
              void loop() {
                digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
                delay(1000);
                digitalWrite(LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
                delay(1000);
```



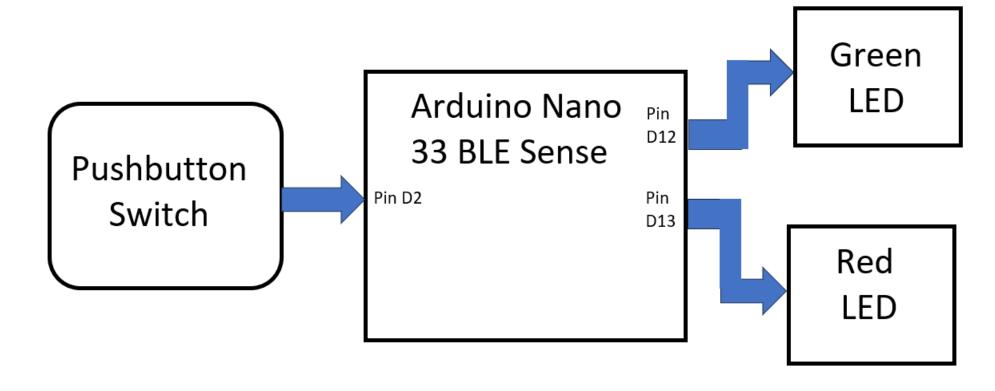
Setting up an Arduino Nano 33 BLE Sense Development Environment...


Arduino Nano 33 BLE Sense Solderless Breadboard (Blink Project)

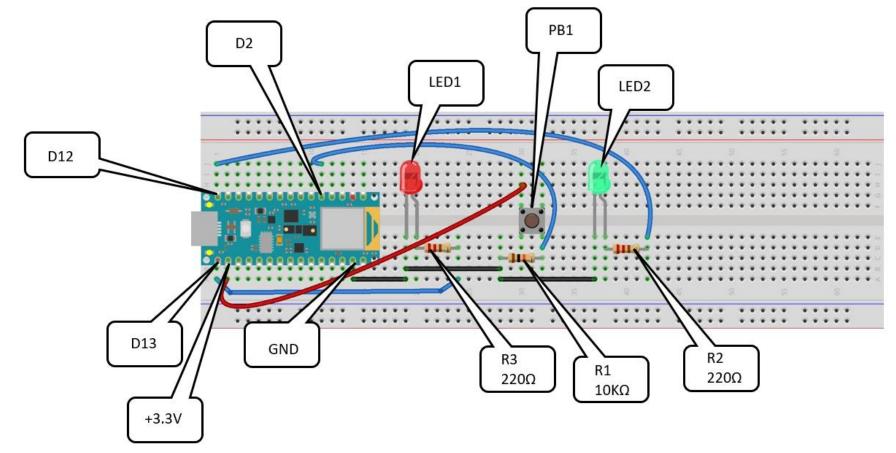

Mini Hands-On Activity



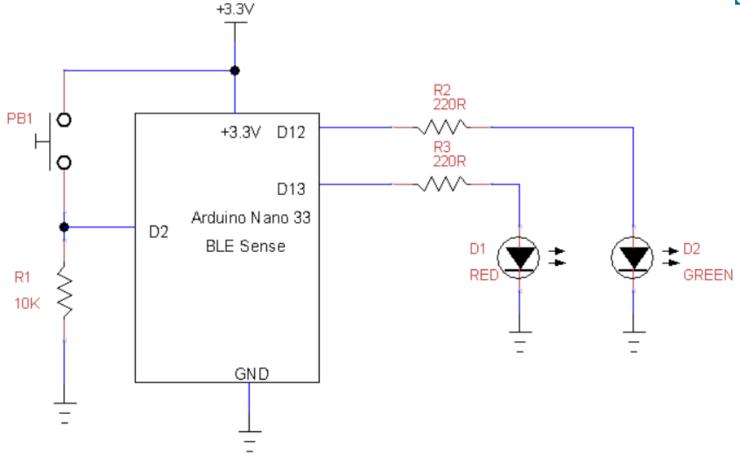
Lab Objectives:


- Participants will learn to wire the Arduino Nano 33 BLE Sense Pushbutton-Alternate Blink Controller.
- Participants will learn to perform an Inquiry Request to generate code using Bard AI.
- Participants will learn to program the Arduino Nano 33 BLE Sense board using the Bard AI code.
- Participants will learn how to operate the Pushbutton-Alternate Blink Controller.

Concept System Block Diagram

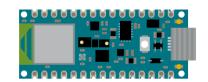


Arduino Nano 33 BLE Sense Pushbutton-Alternate Blink Controller Electrical Wiring Diagram



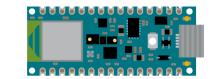
40

Arduino Nano 33 BLE Sense Pushbutton-Alternate Blink Controller Electronic Circuit Schematic Diagram



Information Classification: General

Write code where pressing a pushbutton switch (PB1) wired at digital pin 2 (D2) will blink an LED wired at digital pin 13 (D13) and digital pin 12 (D12). A 10 kilohm pulldown resistor is wired at D2. Pressing the pushbutton switch (PB1) will turn on D12 first, then turn off. D13 output will be off first, then turn on.



Bard Al Inquiry Request for Pushbutton-Alternate Blink Controller Code Generation.

```
C++
const int buttonPin = 2; // Pushbutton switch connected to digital pin 2
const int ledPin1 = 12; // LED connected to digital pin 12
const int ledPin2 = 13; // LED connected to digital pin 13
int buttonState = 0; // Variable to store the button state
void setup() {
 // Set pin modes
 pinMode(buttonPin, INPUT); // Set the button pin as an input
 pinMode(ledPin1, OUTPUT); // Set the LED pin as an output
 pinMode(ledPin2, OUTPUT); // Set the LED pin as an output
void loop() {
 // Read the button state
 buttonState = digitalRead(buttonPin);
 if (!buttonState) { // If the button is pressed (LOW state due to pulldown resistor)
   // Turn on LED1
   digitalWrite(ledPin1, HIGH);
   // Delay for 500 milliseconds
   delay(500);
   // Turn off LED1
   digitalWrite(ledPin1, LOW);
   // Delay for 500 milliseconds
   delay(500);
   // Turn on LED2
```

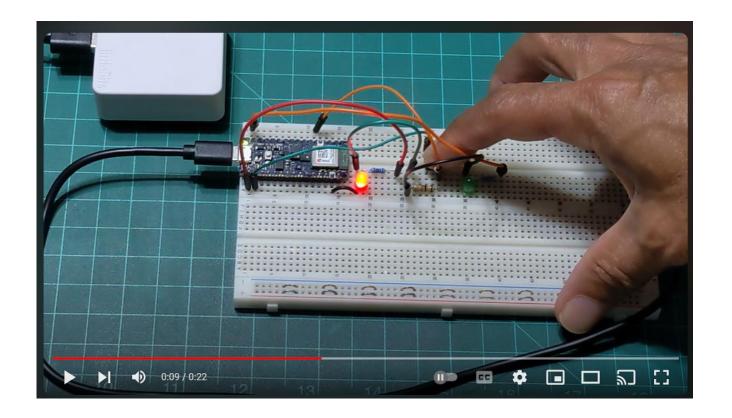

Bard Al Inquiry Request for Pushbutton-Alternate Blink Controller Code Generation. . .

Copy the code and paste it into the Arduino IDE.

```
// Turn on LED2
digitalWrite(ledPin2, HIGH);

// Delay for 500 milliseconds
delay(500);

// Turn off LED2
digitalWrite(ledPin2, LOW);
}
```



Arduino Nano 33 BLE Sense Pushbutton-Alternate Blink Controller video Click the link below:

https://youtu.be/-CKXcvOhJDo

Question 5

Which AI Large Language Model (LLM) platform was used to generate the Pushbutton-Alternate Blink Controller?

- a) Bart
- b) Bert
- c) ChatGPT (OpenAI)
- d) Bard

Thank you for attending

Please consider the resources below:

Chua, C.E., & Storey, V.C. (2022). A tutorial on prototyping internet of things device and systems: A gentle introduction to technology that shapes our lives. *Communications of the Association for Information Systems*, 51(34), 327-364.

https://www.researchgate.net/publication/360263045 A Tutorial on Prototyping Internet of Things Devices and Systems A Gentle Introduction to Technology that Shapes Our Lives

Course_Lab_project_code.zip folder: Github Repository: https://github.com/DWilcher/HCI_Electronics

Kurniawan, A. (2021). *Iot projects with arduino nano 33 ble sense*. Apress. https://link.springer.com/chapter/10.1007/978-1-4842-6458-4_3

DesignNews

Thank You

Sponsored by

