
By Informa Markets

© 2022Beningo Embedded Group, LLC. All Rights Reserved.

Embedded Software Design Techniques

Sponsored by

DAY 5 : System Configuration Management
Techniques

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for
assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up
after the lecture portion concludes.

2

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Course Sessions

3

• Software Architectures 101
• Designing RTOS-based Applications
• Architecture Verification Techniques
• Designing Quality into Embedded Systems
• Software Configuration Management Techniques

Sponsored By

4

Flexible Task Creation Pattern1

Task information and creation is often scattered through-out
application code. This is not just annoying, but creates
software that is difficult to scale, maintain and debug.

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Flexible Task Creation Pattern

5

TASKS SHOULD ALL EXIST IN
THEIR OWN SEPARATE CODE

MODULE

TASK CODE CAN BE MADE
PRIVATE USING STATIC AND

THEN USING A
TASK_NAMEINIT FUNCTION

TASK CODE CAN BE MADE
PUBLIC USING EXTERN AND

THEN CREATED USING A
CONFIGURATION TABLE.

TASK INITIALIZATION
PARAMETERS SHOULD ALL

EXIST IN ONE EASY TO FIND
PLACE.

There are several best practices developers should follow when creating tasks:

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Flexible Task Creation Pattern

6

Tasks have several common config values

• Task Priority

• Stack depth

• Period (for periodic tasks)

Benefits to a task configuration file:

• All task configuration in a single place

• Human readable name

• Easy to make system level changes

Task_config.h

#define TASK_SENSOR_PRIORITY (17U)
#define TASK_TELEMETRY_PRIORITY (17U)
#define TASK_LED2BLINK_PRIORITY (17U)

#define TASK_SENSOR_STACK_DEPTH (2048U)
#define TASK_TELEMETRY_STACK_DEPTH (2048U)
#define TASK_LED2BLINK_STACK_DEPTH (256U)

#define TASK_SENSOR_PERIOD_MS (25U)
#define TASK_TELEMETRY_PERIOD_MS (100U)
#define TASK_ LED2BLINK _PERIOD_MS (100U)

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Flexible Task Creation Pattern

7

A task configuration table is made up of a
developer defined structure with all the
parameters necessary to create a task.

Benefits:

• A single structure to organize all task
creation.

• An array can be created to hold all task
creation parameters

• Any changes to tasks can be done in one
place. (Change value, add/remove task).

• A single loop can initialize all system tasks

// Task configuration structure

typedef struct

{

TaskFunction_t TaskCodePtr;

const char * const TaskName;

const configSTACK_DEPTH_TYPE StackDepth;

void * const ParametersPtr;

UBaseType_t TaskPriority;

TaskHandle_t * const TaskHandle;

}TaskInitParams_t;

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Flexible Task Creation Pattern

8

TaskInitParams_t TaskInitParameters[] =

{

/ / Pointer to the Task function , Task String Name, The task stack depth , Parameter Pointer, Task priority , Task Handle

{(TaskFunction_t)Task_Telemetry, "Task_Telemetry" , TASK_TELEMETRY_STACK_DEPTH, NULL , TASK_TELEMETRY_PRIORITY, NULL } ,

{ (TaskFunction_t)Task_Led2Blink, "Task_Led2Blink", TASK_LED2BLINK_STACK_DEPTH , NULL , TASK_LED2BLINK_PRIORITY , NULL } ,

{ (TaskFunction_t)Task_Led3Blink, "Task_Led3Blink", TASK_LED3BLINK_STACK_DEPTH , NULL , TASK_LED3BLINK_PRIORITY , NULL } ,

{ (TaskFunction_t)Task_Sensors , "Task_Sensors" , TASK_SENSORS_STACK_DEPTH , NULL , TASK_SENSORS_PRIORITY , NULL } ,

} ;

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Flexible Task Creation Pattern

9

The for loop to manage creating the tasks might look like:

for(TaskCount = 0; TaskCount < TasksToCreate; TaskCount++)

{
xTaskCreate(TaskInitParameters[TaskCount].TaskCodePtr,

TaskInitParameters[TaskCount].TaskName ,
TaskInitParameters[TaskCount].StackDepth,
TaskInitParameters[TaskCount].ParametersPtr,
TaskInitParameters[TaskCount].TaskPriority ,
TaskInitParameters[TaskCount].TaskHandle);

}

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

How do you create tasks in your RTOS applications?
- Scatter tasks all over the application
- Initialize them individually in main
- Use a configuration table with an initializing function
- Other

10

Sponsored By

11

Automating Configuration2

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Automating Configuration

12

Config Generator

Template(s)

Code

• YAML
• JSON
• etc

• Text
• HTML
• XML
• etc

• Header
• Source
• etc

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Do you manually or automatically generate your configuration?
- Automatically
- Manually
- Other

13

Sponsored By

14

Case Study3

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Case Study

• A controller product with the following:
• A core code base
• Custom application components
• A need to synchronize product and user interface features

15

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Case Study

Version Management
• Separate your technical layers into different repos!
• Utilize one repo for “mission” specific configuration
• Use Git modules to build the specific application

16

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Case Study

17

Mission
YAMLs

User
Interface

User Interface
Configuration based
on YAMLs

Embedded
Interface

User Interface
Configuration based
on YAMLs

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

How do you synchronize your GUI to your embedded system?
- Configuration files
- Interface control documents
- The hope and a prayer method
- Other

18

Sponsored By

19

Going Further4

Sponsored By

© 2022 Beningo Embedded Group, LLC. All Rights Reserved.

Thank you for attending

20

Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses
• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm
• Embedded Software Design

• https://bit.ly/3PZCtNO

From www.beningo.com under
- Blog > CEC – Embedded Software Design Techniques

http://www.beningo.com/
http://bit.ly/1BAHYXm
https://bit.ly/3PZCtNO
http://www.beningo.com/

© 2022Beningo Embedded Group, LLC. All Rights Reserved.

Thank You

Sponsored by

