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Webinar Logistics

• Turn on your system sound to hear the streaming presentation.

• If you have technical problems, click “Help” or submit a question asking for 
assistance.

• Participate in ‘Group Chat’ by maximizing the chat widget in your dock.

• Submit questions for the lecturer using the Q&A widget. They will follow-up 
after the lecture portion concludes.
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Course Sessions
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• Software Architectures 101
• Designing RTOS-based Applications
• Architecture Verification Techniques
• Designing Quality into Embedded Systems
• Software Configuration Management Techniques
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Flexible Task Creation Pattern1

Task information and creation is often scattered through-out 
application code. This is not just annoying, but creates 
software that is difficult to scale, maintain and debug.
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Flexible Task Creation Pattern
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TASKS SHOULD ALL EXIST IN 
THEIR OWN SEPARATE CODE 

MODULE

TASK CODE CAN BE MADE 
PRIVATE USING STATIC AND 

THEN USING A 
TASK_NAMEINIT FUNCTION

TASK CODE CAN BE MADE 
PUBLIC  USING EXTERN AND 

THEN CREATED USING A 
CONFIGURATION TABLE.

TASK INITIALIZATION 
PARAMETERS SHOULD ALL 

EXIST IN ONE EASY TO FIND 
PLACE.

There are several best practices developers should follow when creating tasks:
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Flexible Task Creation Pattern
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Tasks have several common config values

• Task Priority

• Stack depth

• Period (for periodic tasks)

Benefits to a task configuration file:

• All task configuration in a single place

• Human readable name

• Easy to make system level changes

Task_config.h

#define TASK_SENSOR_PRIORITY                 (17U)
#define TASK_TELEMETRY_PRIORITY           (17U)
#define TASK_LED2BLINK_PRIORITY            (17U)

#define TASK_SENSOR_STACK_DEPTH         (2048U)
#define TASK_TELEMETRY_STACK_DEPTH   (2048U)
#define TASK_LED2BLINK_STACK_DEPTH    (256U)

#define TASK_SENSOR_PERIOD_MS             (25U)
#define TASK_TELEMETRY_PERIOD_MS       (100U)
#define TASK_ LED2BLINK _PERIOD_MS      (100U)
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Flexible Task Creation Pattern
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A task configuration table is made up of a 
developer defined structure with all the 
parameters necessary to create a task. 

Benefits: 

• A single structure to organize all task 
creation.

• An array can be created to hold all task 
creation parameters

• Any changes to tasks can be done in one 
place. (Change value, add/remove task).

• A single loop can initialize all system tasks

// Task configuration structure

typedef struct

{

TaskFunction_t TaskCodePtr;

const char * const TaskName;

const configSTACK_DEPTH_TYPE StackDepth;

void * const ParametersPtr;

UBaseType_t TaskPriority;

TaskHandle_t * const TaskHandle;        

}TaskInitParams_t;
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Flexible Task Creation Pattern
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TaskInitParams_t TaskInitParameters[]  = 

{

/ /  Pointer to the Task function    ,  Task String Name, The task stack depth                   ,  Parameter Pointer,  Task priority                          ,  Task Handle 

{(TaskFunction_t)Task_Telemetry,  "Task_Telemetry" ,  TASK_TELEMETRY_STACK_DEPTH, NULL                     ,  TASK_TELEMETRY_PRIORITY,  NULL        } ,  

{ (TaskFunction_t)Task_Led2Blink,  "Task_Led2Blink",  TASK_LED2BLINK_STACK_DEPTH ,  NULL                     ,  TASK_LED2BLINK_PRIORITY ,  NULL        } ,  

{ (TaskFunction_t)Task_Led3Blink,  "Task_Led3Blink",  TASK_LED3BLINK_STACK_DEPTH ,  NULL                     ,  TASK_LED3BLINK_PRIORITY ,  NULL        } ,  

{ (TaskFunction_t)Task_Sensors    ,  "Task_Sensors"   ,  TASK_SENSORS_STACK_DEPTH    ,  NULL                     ,  TASK_SENSORS_PRIORITY     ,  NULL       } ,      

} ;
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Flexible Task Creation Pattern
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The for loop to manage creating the tasks might look like:

for(TaskCount = 0; TaskCount < TasksToCreate; TaskCount++)

{
xTaskCreate(TaskInitParameters[TaskCount].TaskCodePtr,

TaskInitParameters[TaskCount].TaskName ,
TaskInitParameters[TaskCount].StackDepth,
TaskInitParameters[TaskCount].ParametersPtr,
TaskInitParameters[TaskCount].TaskPriority , 
TaskInitParameters[TaskCount].TaskHandle);

}
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How do you create tasks in your RTOS applications?
- Scatter tasks all over the application
- Initialize them individually in main
- Use a configuration table with an initializing function
- Other
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Automating Configuration2
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Automating Configuration
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Config Generator

Template(s)

Code

• YAML
• JSON
• etc

• Text
• HTML
• XML
• etc

• Header
• Source
• etc
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Do you manually or automatically generate your configuration?
- Automatically
- Manually
- Other
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Case Study3
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Case Study

• A controller product with the following:
• A core code base
• Custom application components
• A need to synchronize product and user interface features
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Case Study

Version Management
• Separate your technical layers into different repos!
• Utilize one repo for “mission” specific configuration
• Use Git modules to build the specific application
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Case Study
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Mission
YAMLs

User 
Interface

User Interface 
Configuration based 
on YAMLs

Embedded 
Interface

User Interface 
Configuration based 
on YAMLs
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How do you synchronize your GUI to your embedded system?
- Configuration files
- Interface control documents
- The hope and a prayer method
- Other
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Going Further4
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Thank you for attending
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Please consider the resources below:
• www.beningo.com

• Blog, White Papers, Courses
• Embedded Bytes Newsletter

• http://bit.ly/1BAHYXm
• Embedded Software Design

• https://bit.ly/3PZCtNO

From www.beningo.com under
- Blog > CEC – Embedded Software Design Techniques

http://www.beningo.com/
http://bit.ly/1BAHYXm
https://bit.ly/3PZCtNO
http://www.beningo.com/
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Thank You
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