

How to Select the Right Microcontrollers for an Application

DAY 3: The Modern MCU Selection Process

Sponsored by

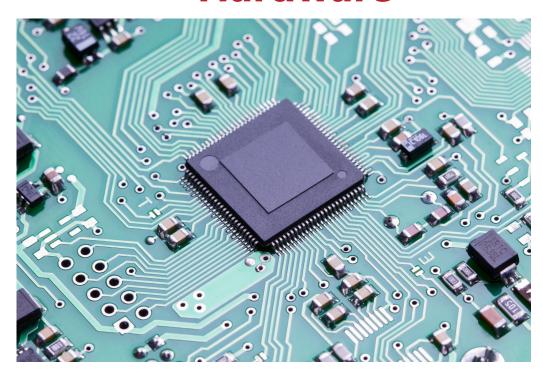
Webinar Logistics

- Turn on your system sound to hear the streaming presentation.
- If you have technical problems, click "Help" or submit a question asking for assistance.
- Participate in 'Group Chat' by maximizing the chat widget in your dock.
- Submit questions for the lecturer using the Q&A widget. They will follow-up after the lecture portion concludes.

Course Sessions

- The Microcontroller Industry Today
- MCU Selection Criteria
- The Modern MCU Selection Process
- Microcontroller Selection Use Cases
- Microcontroller Selection Best Practices

1 The MCU Selection Process



Microcontroller Selection

Hardware

Software

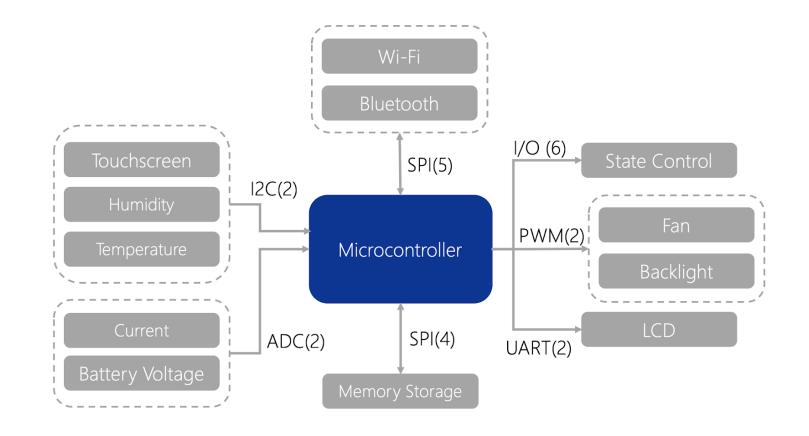
```
int int_board_io(s)
{
  init_menu_text(b)
  bcm2835_init()
  bcm2835_gpio_fset
  bcm2835_gpio_fset
```

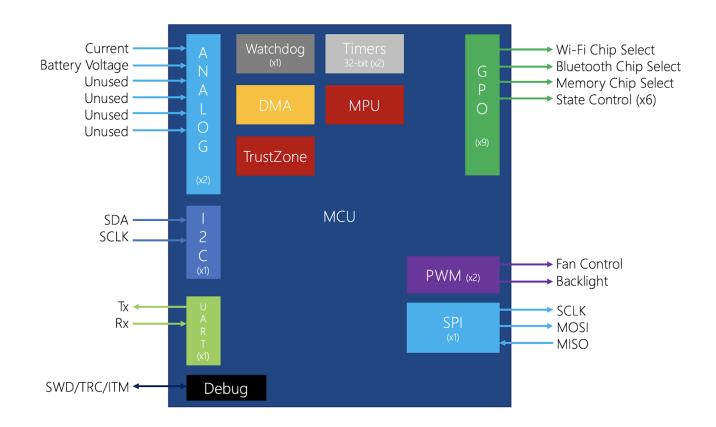

Which is more important to you in the selection process?

- Hardware
- Software
- Other

1

The MCU Selection Process - Take 2

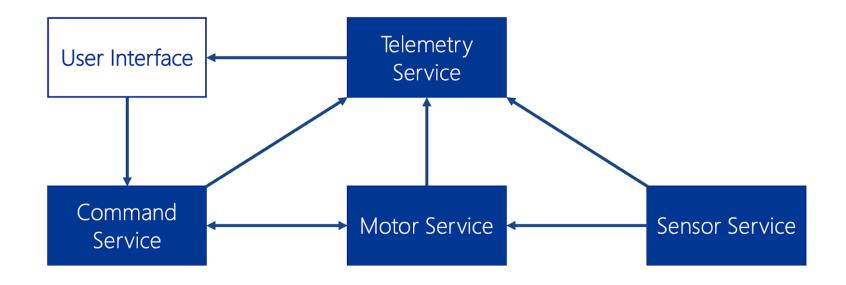

Selecting a modern microcontroller is more than just an electrical process, it's a systems process!


Step #1 - Create a Hardware Block Diagram

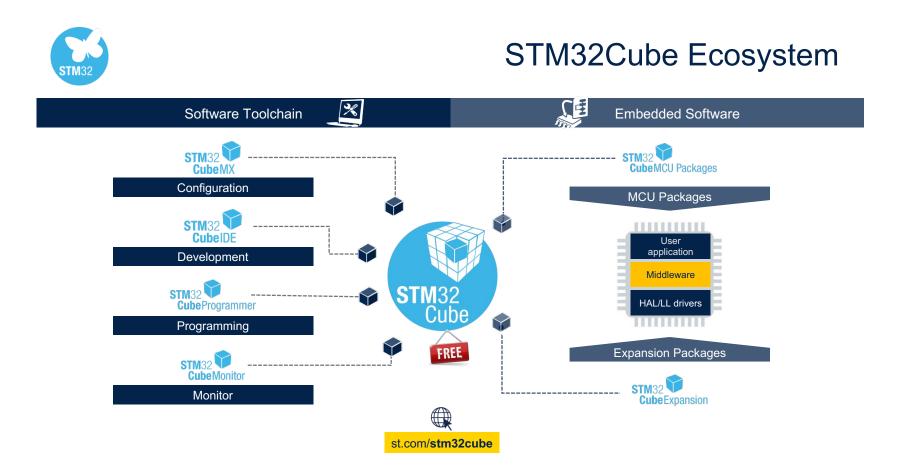
Step #1 - Create a Hardware Block Diagram

Step #2 – Identify the Systems Data Assets

Data Asset	Asset Type	Data Size	Sample Rate	Processing		
Analog	Sensor	32 Bytes	1 kHz	Digital Notch Filter		
Digital	Sensor	128 Bytes	1 KHz	Running Average – 5 Sample		
Firmware	IP	256 KBytes	-	See design		
Keys	Keys	128 Bytes	-	Secure Storage		
Device ID	Data	128 Bits	-	Secure Storage		


Step #3 – Perform a TMSA

Security Objective	Countered Threats	Targeted Data Assets	Security Properties ²	Design	Mfg	Inventory	End Use	Term
Access Control ¹	Spoofing Malware	Configuration T. Firmware	C I, A	N/A Dig Sign	N/A Dig Sign	N/A N/A	Encryption Dig Sign	Dead⁴ Dead⁴
Secure Storage ¹	Tamper	HW ID T. Firmware User Data Configuration Keys	I I, A C, I C C, I	N/A Dig Sign N/A N/A N/A	eFuse Dig Sign N/A N/A SEF ³	eFuse Dig Sign N/A N/A SEF ³	eFuse Dig Sign Encryption Encryption SEF ³	eFuse Dead ⁴ Dead ⁴ Dead ⁴ Dead ⁴
Firmware Auth	Malware	T. Firmware	I, A	Dig Sign	Dig Sign	Dig Sign	Dig Sign	Dead ⁴
Comm ¹	MitM	User Data Keys	C, I C, I	N/A N/A	N/A SEF³	N/A SEF³	Encryption SEF ³	Dead⁴ Dead⁴
Secure State	Malware Tamper	T. Firmware HW ID T. Firmware User Data Configuration Keys	I I, A I, A C, I C C, I	Dig Sign N/A Dig Sign N/A N/A N/A	Dig Sign eFuse Dig Sign N/A N/A SEF ³	Dig Sign eFuse Dig Sign Encryption Encryption SEF ³	Dig Sign eFuse Dig Sign Encryption Encryption SEF ³	Dead ⁴ eFuse Dead ⁴ Dead ⁴ Dead ⁴ Dead ⁴


Step #4 - Review the Software Model and Architecture

Step #5 – Research Microcontroller Ecosystems

Step #6 - Evaluate Development Boards

STM32 Development Boards

For rapid evaluation and prototyping

Nucleo Boards

Flexible **Prototyping**

st.com/stm32nucleo

Discovery Kits

Key Feature Prototyping

st.com/stm32discovery

Evaluation Boards

Full Feature Evaluation

st.com/stm32evaltools

Note: All *ST* boards integrate an in-circuit *ST*-Link debugger and programmer.

Step #7 - Make the Final Selection

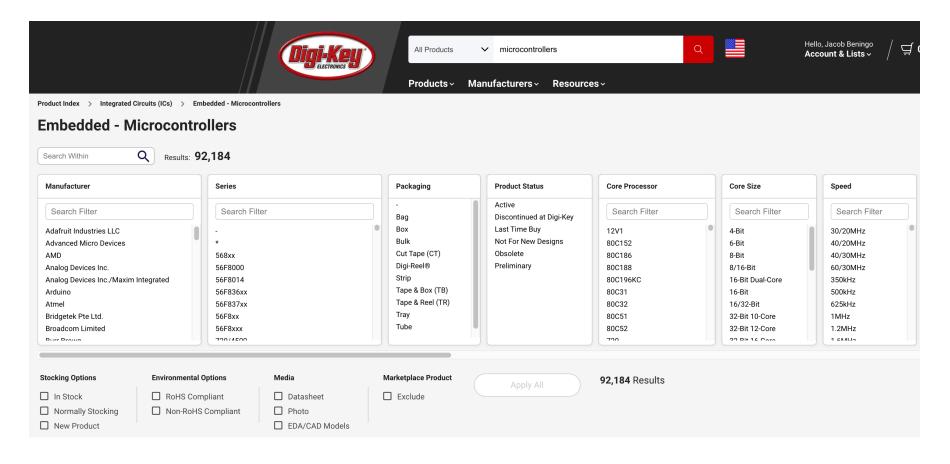
					Micro	contro	ller#1			Microcontroller #2					
	Criteria	Weight	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5	Weighted Rating Total	Rating 1	Rating 2	Rating 3	Rating 4	Rating 5	Weighted Ratin Total	
	32-bit Architecture	4	3	3	3	3	3	60	2	2	2	2	2	40	
au	Processor speed	4	2	2	2	2	2	40	1	1	1	1	1	20	
Hardware	Instruction set	5	2	1	1	1	2	35	1	2	2	2	1	40	
흕	Minimial interrupt latency	5	1	2	2	1	1	35	3	1	1	3	2	50	
ar	Loweset energy consumption	5	1	1	1	1	1	25	2	2	2	2	2	50	
Ŧ	Part Availability	5	1	2	1	1	1	30	2	3	3	3	3	70	
	Memroy footprint / speed	4	3	3	3	3	3	60	2	2	2	2	2	40	
-	File system best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	
ar e	TCP/IP stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	
<u>×</u>	USB stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	
ਚੱ	Graphics stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	
Middleware	Middleware requires minimal integration effort	4	2	1	2	2	1	32	3	2	3	3	1	48	
~	Additional 3rd party tools integrated seamlessly	3	1	2	1	2	1	21	2	3	2	3	2	36	
	Maxmize professional growth potential	2	2	2	1	3	1	18	1	1	3	2	3	20	
-	Least amount of stress to implement	2	2	3	1	1	3	20	1	2	3	3	2	22	
ě	Most fun / interesting	1	2	3	3	1	2	11	3	1	1	2	3	10	
Engineer	Minimized labor intensity	3	1	2	3	1	3	30	2	3	1	2	1	27	
ᇤ	Least deadline constrained to get up to speed	2	2	1	2	1	3	18	3	2	3	2	1	22	
	Most internal resources available	3	1	2	3	3	3	36	2	3	1	1	1	24	
Security	Security Certified RTOS	5	2	2	1	3	1	45	3	3	2	1	2	55	
	Supports Arm TrustZone	4	1	1	2	1	1	24	2	2	3	2	2	44	
	Supports TF-M	5	1	1	1	2	2	35	2	2	2	3	3	60	
	Secure OTA / Bootloader support	3	2	2	1	2	2	27	1	1	2	3	3	30	
	Total	198	98	94	101	101	95	1852	104	113	109	116	102	2059	
			Microcontroller #1			Microcontroller #2									

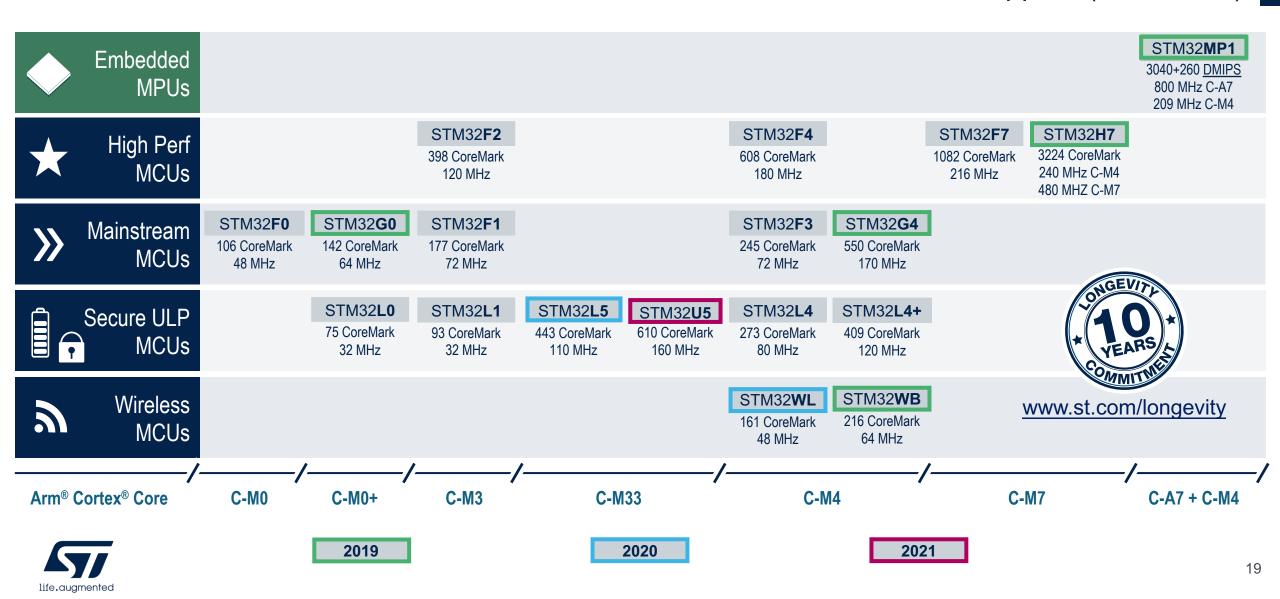
Which is more important to you in the selection process?

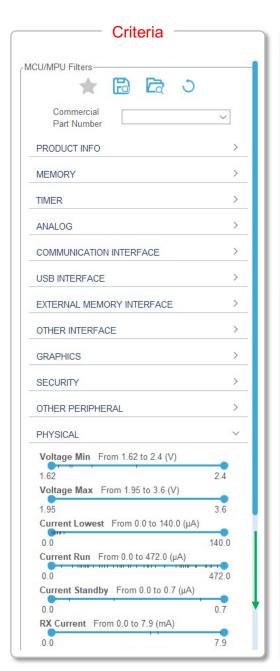
- Hardware
- Software
- The combined ecosystem
- Other

3

Tools for Finding Microcontrollers

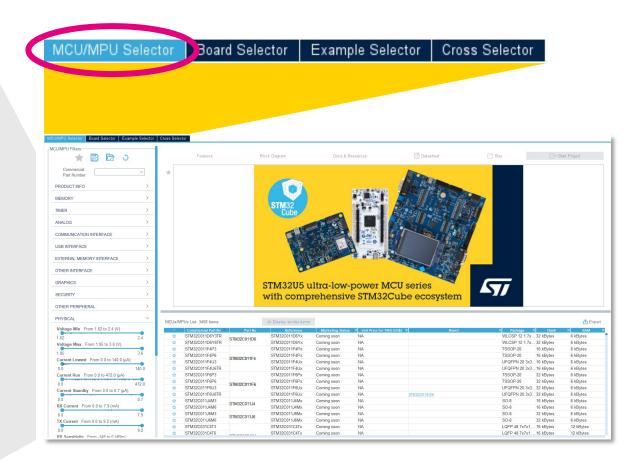

How do we find the right options?


Digikey



STM32 MCU/MPU Portfolio

#1 GP MCUs, 9.4 billion shipped! (as of 2021)



Chip & Module Selection

3,458 part numbers and growing

STM32 MCU Finders for Smartphones and PCs

STM32 Mobile and PC MCU Finders

Mobile Version

What tools do you use to find microcontrollers?

- Supplier tools
- Vendor tools
- Web tools / searches
- Other

4 Going Further

Thank you for attending

Please consider the resources below:

- www.beningo.com
 - Blog, White Papers, Courses
 - Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm
 - Embedded Software Design
 - https://bit.ly/3PZCtNO

From www.beningo.com under

- Blog > CEC – How to Select the Right Microcontroller for an Application

DesignNews

Thank You

Sponsored by

