Embedded System Design Techniques™

Building Your Own Internet Connected PLC

Class 2: Designing a PLC

April 23rd, 2018 Jacob Beningo

Course Overview

Topics:

- **PLC Fundamentals**
- **Designing a PLC**
- PLC Software Design Part 1
- PLC Software Design Part 2
- **PLC Application Design**

Session Overview

- Wireless PLC Overview
- STM32 Wireless PLC
- Application Hardware
- KT Matrix

Wireless PLC Overview

What You will need ...

Nucleo-401RE

X-Nucelo-IDW01M01 X-Nucelo-PLC01A1

X-Nucleo-OUT01A1

Power Supply

A light snack ...

X-NUCLEO-IDW01M1

- Wi-Fi Module
- FCC, IC, CE Certified
- Arduino UNO R3 headers
- 802.11 b/g/n compliant
- Integrated antenna

X-NUCLEO-OUT01A1

- Solid State Relays
- 10.5 to 33 V Operating Voltage
- High Side Solid State Relay (ISO9200BQ)
- Channel Output 0.7 amps
- Status LED's
 - Thermal protection
 - Communication fault
- Output Status Indicator
- Reverse protection diodes
- Galvanic insulated outputs

ST morpho connector

X-NUCLEO-PLC01A1

- Industrial Input / Output
- 8 Inputs (CLT01-38SQ7)
- 8 Outputs (VNI8200XP)
- SPI Link Communication
- Arduino headers

CLT01-38SQ7 VNI8200XP

Nucleo-401RE

- ARM® Cortex®-M4 84 MHz
- 512 KB Flash
- 96 KB RAM
- ST-Link Programmer
- Arduino headers

Hardware Setup

CEC CONTINUING EDUCATION CENTER

Presented by:

Hardware Setup

Hardware Setup

Application Hardware Selection

Kepner-Tregoe (KT) Decision Matrix

- A decision making technique that uses a decision matrix to force a ranking among possible alternative solutions
- Can be used to solve a problem and gain group consensus
- Arrive at a numeric number that can be compared

9 Step Procedure to Evaluate Solutions

- 1) State the issue, problem, and decision to be made.
- Explain the use of the decision matrix technique to participants. 2)
- 3) Draft a matrix on a flip chart or white board with candidate choices positioned as rows and criteria as columns.
- 4) Weigh the criteria, if required (e.g., 1-5 weight).
- Rate each choice within each decision/selection criteria (e.g, 1-5 score -5) do not rank here).
- Multiply the rating by its relative weight to determine weighted score. 6)
- 7) Total the scores.
- 8) Review results and evaluate, using common sense and good judgment.
- 9) Reach consensus.

- 1) Select an appropriate RTOS for a project
- KT Matrix will evaluate how well each RTOS meets our project requirements
- 3) Major RTOS Concerns:
 - Performance, Features, Cost, Ecosystem,
 Middleware, Vendor, Engineer, Security
 - Identify specific criteria such as:
 - RAM and ROM Usage
 - Support, etc

- 4) Select an appropriate RTOS for a project
- 1) KT Matrix will evaluate how well each RTOS meets our project requirements
- 2) Major RTOS Concerns:
 - Performance, Features, Cost, Ecosystem,
 Middleware, Vendor, Engineer, Security
 - Identify specific criteria such as:
 - RAM and ROM Usage
 - Support, etc

5) Develop the ranking criteria

Weighting System										
1 Could care less but still should consider										
2	Probably don't need									
3	Nice to have but not mission critical									
4	Not critical but must have									
5	Critical must have									

6 - 8) Rank and evaluate the matrix

					1	RTOS #	1		RTOS #2							RTOS #3						
			Rating	Rating	Rating	Rating	Rating	g Weighted Rating	Rating	Rating	ng Rating	Rating	g Rating	Weighted Rating	Rating	Rating	Rating	Rating	Rating	Weighted Rating		
	Criteria	Weight	1	2	3	4	5	Total	1	2	3	4	5	Total	1	2	3	4	5	Total		
	Smallest RAM footprint	4	3	3	3	3	3	60	2	2	2	2	2	40	1	1	1	1	1	20		
Performance	Smallest ROM footprint	4	2	2	2	2	2	40	1	1	1	1	1	20	3	3	3	3	3	60		
	Highest degree of determinism	5	2	1	1	1	2	35	1	2	2	2	1	40	3	3	3	3	3	75		
Ē	Best meets reliability requirements	5	1	2	2	1	1	35	3	1	1	3	2	50	2	3	3	2	3	65		
윤	Minimal context switch times	5	1	1	1	1	1	25	2	2	2	2	2	50	3	3	3	3	3	75		
Pe	Minimal interrupt latency	5	1	2	1	1	1	30	2	3	3	3	3	70	3	1	2	2	2	50		
	Lowest energy consumption	4	3	3	3	3	3	60	2	2	2	2	2	40	1	1	1	1	1	20		
Features	Best Real-time trace capabilities	3	2	1	2	3	1	27	1	2	3	1	2	27	3	3	1	2	3	36		
	Supports static allocation of RTOS objects	4	3	3	3	3	3	60	2	2	2	2	2	40	1	1	1	1	1	20		
	Most efficient memory protection	4	2	3	1	2	3	44	3	1	2	3	1	40	1	2	3	1	2	36		
	Easiest to scale	5	3	2	3	2	3	65	1	3	1	3	1	45	2	1	2	1	2	40		
	Easiest to configure features	5	2	2	3	1	1	45	1	1	2	2	2	40	3	3	1	3	3	65		
	Processor derivative fully supported	5	2	2	2	2	2	50	1	1	1	1	1	25	3	3	3	3	3	75		
	Conforms to required interface standards (i.e. POSIX, DO-178B)	3	1	1	1	1	1	15	3	3	3	3	3	45	2	2	2	2	2	30		
	Easiest to port to other MCU's and architectures	3	1	2	3	1	2	27	2	3	1	2	3	33	3	1	2	3	1	30		
	Most relevent safety certifications	4	3	2	3	2	3	52	2	3	1	3	1	40	1	1	2	1	2	28		
	Lowest upfront licensing costs	5	3	3	3	3	3	75	1	1	1	1	1	25	2	2	2	2	2	50		
	Lowest royalty cost per unit	3	3	3	3	3	3	45	2	2	2	2	2	30	1	1	1	1	1	15		
	Greatest familiarity with this RTOS	4	3	2	1	1	2	36	1	3	2	2	3	44	2	1	3	3	1	40		
Cost	Lowest time to get up to speed with RTOS specifics	3	1	2	3	3	2	33	2	3	1	1	3	30	3	1	2	2	1	27		
ဒ	Smallest tool investment	4	3	2	2	3	3	52	1	3	3	1	1	36	2	1	1	2	2	32		
	Lowest training investment	5	2	1	3	2	1	45	1	3	2	1	3	50	3	2	1	3	1	50		
	Lowest cost of middleware (price and integration effort vs quality	5	2	1	2	2	2	45	3	2	3	3	1	60	1	3	1	1	3	45		
	Least open source (minimize new IP release)	3	1	1	1	1	1	15	2	3	3	2	2	36	3	2	2	3	3	39		
	Highest adoption rate in target industry	3	3	2	3	2	3	39	1	3	1	3	2	30	2	1	2	1	1	21		
E	Most architectures supported	3	2	2	2	2	2	30	3	3	3	3	3	45	1	1	1	1	1	15		
EcoSystem	Largest and most vibrant forum community (fast to respond)	4	2	3	2	3	1	44	1	2	1	1	3	32	3	1	3	3	2	48		
Š	Fastest technical support available	5	1	2	1	2	1	35	2	3	2	3	2	60	3	1	3	1	3	55		
8	Highest quality professional training available	2	2	1	2	1	2	16	1	3	1	3	1	18	3	2	3	2	3	26		
Щ	Example projects and source available	4	2	3	2	3	2	48	3	1	3	1	3	44	1	2	1	2	1	28		
	Integrated development tools and plugins	4	2	1	3	2	1	36	1	3	1	1	3	36	3	1	3	3	1	44		

Presented by:

6 - 8) Rank and evaluate the matrix

			Rating	Rating	Rating	Rating	Rating	Weighted Rating	Rating	Rating	Rating	Rating	Rating	Weighted Rating	Rating	Rating	Rating	Rating	Rating	Weighted Rating		
	Criteria	Weight	1	2	3	4	5	Total	1	2	3	4	5	Total	1	2	3	4	5	Total		
a)	File system best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	1	3	1	1	3	36		
are	TCP/IP stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	1	3	1	1	3	36		
8	USB stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	1	3	1	1	3	36		
₫	Graphics stack best meets system requirements	4	2	1	2	2	1	32	3	2	3	3	1	48	1	3	1	1	3	36		
Middlew	Middleware requires minimal integration effort	4	2	1	2	2	1	32	3	2	3	3	1	48	1	3	1	1	3	36		
	Additional 3rd party tools integrated seamlessly	3	1	2	1	2	1	21	2	3	2	3	2	36	3	1	3	1	3	33		
	Best historical track record	3	2	2	1	3	1	27	3	3	2	1	2	33	1	1	3	2	3	30		
	Most relevent certified development process	3	1	1	2	1	1	18	2	2	3	2	2	33	3	3	1	3	3	39		
<u> </u>	Shortest support request times	5	1	1	1	2	2	35	2	2	2	3	3	60	3	3	3	1	1	55		
Vendor	Best strategic fit	4	2	2	1	2	2	36	1	1	2	3	3	40	3	3	3	1	1	44		
%	Longest term support for the RTOS	4	2	2	1	1	2	32	3	3	2	2	3	52	1	1	3	3	1	36		
	Best code quality	4	1	1	2	2	1	28	2	2	3	3	2	48	3	3	1	1	2	40		
	Best code documentation	4	2	2	1	2	2	36	3	3	2	3	3	56	1	1	3	1	1	28		
	Minimal professional growth potential	2	2	2	1	3	1	18	1	1	3	2	3	20	3	3	1	1	2	20		
 	Least amount of stress to implement	2	2	3	1	1	3	20	1	2	3	3	2	22	3	1	2	2	1	18		
Engine	Most fun / interesting	1	2	3	3	1	2	11	3	1	1	2	3	10	1	2	2	3	1	9		
E	Minimized labor intensity	3	1	2	3	1	3	30	2	3	1	2	1	27	3	1	2	3	2	33		
<u> </u>	Least deadline constrained to get up to speed	2	2	1	2	1	3	18	3	2	3	2	1	22	1	3	1	3	2	20		
	Most internal resources available	3	1	2	3	3	3	36	2	3	1	1	1	24	3	1	2	2	2	30		
	Total	188	96	92	100	97	93	1790	99	111	103	110	98	1944	105	96	97	94	101	1875		
					F	RTOS #1	L		RTOS #2							RTOS #3						

9) Come to a consensus

Additional Resources

- Download Course Material for
 - C/C++ Doxygen Templates
 - Example source code
 - Blog
 - YouTube Videos
- Embedded Bytes Newsletter
 - http://bit.ly/1BAHYXm

From <u>www.beningo.com</u> under

- Blog > CEC – Building Your own Internet Connected PLC

