FPGA Programming

Class 3: HDL

September 13, 2017
Louis W. Giokas

CONTINUING
. EDUCATION
DesignNews CEC CENTER

WIABl) ROHDE&SCHWARZ

This Week’s Agenda

Monday FPGA Device Description
Tuesday Design Flow
Wednesday HDL

Thursday Synthesis and Layout
Friday Programming the Chip

Presented by:

CONTINUING
. EDUCATION
DesignNews CEC CENTER 2

/e—s g
g ¥/ ROHDE&SCHWARZ

Course Description

We start with an introduction to the class of devices called Field
Programmable Gate Arrays (FPGAs). The layout and design of
several types and critical parameters will be described and
discussed. Itis important to understand the way the device is
constructed to develop effective algorithms.

The device we will be using this week will be the Microsemi
IGLOO2. We will also discuss other devices and their structure.

We will introduce two common Hardware Description Languages
(HDL), but give examples in one (Verilog).

Presented by:

EBUCATION p &
DesignNews CECCENTER 3 INgHKBY) RoHDE2SCHWARZ

Today’s Agenda

* Overview

 Tutorial

« Examples

e Conclusion/Next Class

Presented by:

CONTINUING
. EDUCATION
DesignNews CEC CENTER 4

i) ROHDE&SCHWARZ

Overview

A Hardware Description Language (HDL) is
used to provide a precise description of the
structure and behavior of electronic circuits in
a textual form

e We use HDL to describe the functions to be
implemented in the FPGA

e \We also use it to describe all the control lines
required by our application

CONTINUING
. EDUCATION
DesignNews CEC CENTER >

Presented by:

ARl) ROHDE&SCHWARZ

Overview
* HDL History

— First modern HDL was Verilog (mid-1980s)

— VHDL was introduced by the US Department of
Defense (DoD) in the late 1980s. It is based on the
Ada language

— Other HDLs existed, but these are the two used
today
* Example: System-C
— System Verilog is used for verification

* |tis an extension of Verilog

CONTINUING
. EDUCATION
DesignNews CEC CENTER 6

Presented by:

INFARY) ROHDE&SCHWARZ

Overview

 HDL Standards
— HDLs in use have been made into IEEE standards
— Verilog: IEEE 1364-2005
— System Verilog: IEEE 1800-2012
— VHDL: I[EEE 1076-2008

— Standardization ensures that code can be
processed by compilers from multiple vendors

* Also allows code developed separately to be combined

CONTINUING
. EDUCATION
DesignNews CEC CENTER 7

Presented by:

INFARY) ROHDE&SCHWARZ

Overview
e The reason for the use of HDLs is that circuits

began to get so complex that creating and

maintaining circuit diagrams became too
difficult

* Using concepts from computer engineering
concepts such as layering and data hiding
increased the size of circuitry that could be
specified

 Still a complex process, but with good tools,
manageable

CONTINUING
. EDUCATION
DesignNews CEC CENTER 8

Presented by:

INFARY) ROHDE&SCHWARZ

Tutorial

* We will go over a simple circuit that combines
a few types of gates just to get the idea

* This is not a comprehensive example or
tutorial, just an introduction

e Just want to highlight some of the syntax

e Out little example could be used a door
opener

Presented by:

CONTINUING
. EDUCATION
DesignNews CEC CENTER 9

MR8l) ROHDE&SCHWARZ

Tutorial

* The Verilog language allow the specification of
logic elements and the connections between
them
— We specify inputs and outputs
— We specify wires within the circuit
— We specify structure of the circuit

— We specify behavior of the circuit elements and
overall circuit

Presented by:

EBUCATION p &
DesignNews CECCENTER 10 INgHKBY) RoHDE2SCHWARZ

&

output F;
// details not shown

Lendmodule
Emodule ORZ (x, vy, F):

rodie I (5, £) Tutorial

Jmodule Circuitl (A, B, C, X);
input &, B, C;

Behavior output X;
input x, y; \\\\\\\s reg X;

output F;
reg F;
always @ (x or y)
begin
F <= x | v:
end;

Lendmodule;

Emcdule BANDZ(x, v, F); StrUCture
input %, v
output F;

// details not shown

_endmodule;
Emodule Circuitl (A, B, C, X);

input &, B, C;

output X;

wire nl, nZ;

Inv Inv 1 (C, nl);

OR2 ORZ 1 (A, B, n2);
AND2 BNDZ 1 (nl, n2, X);

endmodule;

siiors CECEZE

always @ (A or B or C)
1 begin
X<=(-A) &« (B | C);

= Eﬂd

endmodule;

n2

-
B

nl

Presented by:
11

OHDE&SCHWARZ

Tutorial

* Notice that we define the primitive circuit
types and their behaviors as types

— Generally these will be in a library

— We then instantiate them, possibly many times

* We also have to define all the signals, inputs
and wires as types, then we use them in the
structural description

— Built in types, such as wire, are available

CONTINUING
. EDUCATION
DesignNews CEC CENTER 12

Presented by:

ARl) ROHDE&SCHWARZ

Examples

* |n the following we will go through several
code snippets
— The first couple will be complete routines
— Then we will look at code from a FFT
implementation
 The goal is to show the power, as well as the
complexity

— Code is color coded, showing keywords and user
defined symbols
Presented by:

EDUCATION -
DesignNews CEC CENTER 13

M%) ROHDE&SCHWARZ

Examples

“timescale lns / lns
Imodule counter (count, clk, reset);
output [7:0] count;

input clk, reset;

reg [7:0] count;
parameter tpd resst_to_count =

L2 (a

ETRRT

parameter tpd clk_to_count =

A simple counter.
] function [7:0] increment; Note the mUIthIt

input [7:0] wal;

reg [3:0] i; entltleS

req cCarry;

1 begin
increment = wal;
carry = 1'kl;
| £
* Exit this loop when carry == zero, OR all bits processed
1 *
for (1 = 4'b0; ((carry == 4'bl) && (1 <= T7)); 1 = i+ 4'bl)
1 begin
increment[i] = wval[i] * carry;
carry = wval[i] & carry;
H end
- end
endfunction

always B (posedge clk or posedge reset)
1if (reset)
count = #tpd reset to_count 8'h00;
else
count <= ftpd clk to count increment (count);

- endmodule

EOUCATION
DesignNews CEC CENTER 14

Presented by:

ROHDE&SCHWARZ

Examples

wire gval;

reg
reg
reg
reg

dff

reg

dval;
clear;
preset;
clock;

dff_inst{ gval, dwval, clear, preset, clock);

control, din;

wire udp out;

sudp sudp inst(udp out, control, dim);

wWire muxuutﬂ

reg

ctl, d&, dB;

multiplexer mult_inst(muxout, ctl, da&, dB);

endmodul e

CONTINUING
. EDUCATION
DesignNews CEC CENTER 15

Shows use of clock signals.
Below is the behavior of the
dff type used in the main

module.

‘timescale 1lns [lps
‘celldefine

dmodule dff (g, d, clear,

output g;

preset, clock);

input d, clear, presst, clock;

reqg dr

always @(clear or preset)
if (lclear)

assign g = 0;
else if (!preset)
assign g = 1;

else

deassign g;

always B (posedge clock)
q = d;

endmodule

‘endcelldsfine

Presented by:

ROHDE&SCHWARZ

module Fft_32K
clk,
reset,
master_sink_dav,
master_sink_sop,
master_source_dav,
inv_i,
data_real_in,
data_imag_in,
fFt_real_out,
fft_imag_out,
exponent_out,
master_sink_ena,
master_source_sop,
master_source_eop,
master_source_enaj;

parameter data_width = 16;
parameter twiddle width
parameter transform_length =

f# GLOBAL PARAMETER DECLARATIOH

Examples

#/The number of bits in the input data for both real and imag parts

= 163 //The number of bits
32768;

parameter coshex_init_file = "fft_32K_coshex.hex";
parameter sinhex_init_file = "fFt_32K_sinhex.hex";
parameter loq2_transform_length = 15;

in the twiddle factor for both real and imag parts

This is the beginning of a FFT
module. | know it is hard to

read, but | wanted to give you

parameter mram_buf_add_width = 15;

input clk;

input reset;

input master_sink_dav;

input master_sink_sop;

input master_source_dau;
input inv_i;

input [data_width-1:8] data_real_in;
input [data_width-1:8] data_imag_in;
output [data_width-1:8] fft_real_out;
output [data_width-1:8] fft_imag_out;
output [5:8] exponent_out;

output master_sink_ena;

output master_source_sop;
output master_source_eop;
output master_source_ena;

wire clk_fFft;

wire clk_data;

wire [data_width-1:8] data_real_in_fft_top;
wire [data_width-1:8] data_imag_in_fft_top;
wire [data_width-1:8] data_real_in_fft_bot;
wire [data_width-1:8] data_imag_in_fft_bot;
wire inv_i_fft;

wire master_sink_ena_comb;
wire master_sink_ena_fft_top;
wire master_sink_ena_fFft_bot;
wire master_sink_dav_fft;
wire master_sink_sop_fft;

an idea of the amount of detall
required.

Presented by:

ROHDE&SCHWARZ

Examples

always @ (posedge clk data out)

begin
if(reset == 1'bl)
begin)]
tf sp dl <= 1'b0; In this code snippet we are
tf sp dZ <= 1'h0; . . .
cnt_dir dl <= 1'b0; manipulating the bits of the
cnt dir d2Z <= 1'b0; ; ;
count. rag <o 0; real and Imaginary parts.
end Note that there is lots of
else e e .
begin definition of signals

tf sp dl <= reset cnt;
tf sp dZ <= tf sp dl;
cnt dir dl <= cnt dir;
cnt _dir dZ <= cnt dir dl;
count reg <= count;
end
end

preceding this.

always @ (posedge clk fft)

begin
if (reset == 1'bl)
cnt en dl <= 0;
else
cnt en dl <= cnt en;
end

Presented by:

CONTINUING
. EDUCATION
DesignNews CEC CENTER 17

ROHDE&SCHWARZ

Examples

always @ (posedge clk fft)
begin
if (reset == 1'bl)
begin

real top dl <= 0;
imag top dl <= 0;
real top d2 <= 0;
imag top d2 <= 0;
real top d3 <= 0;
imag top d3 <= 0;
real top d4 <= 0;
imag top d4 <= 0;
real top d5 <= 0;
imag_top_d5 <= 0;
master_source_sop_reg <= 1'b0;
master source ena reg <= 1'b0
master_source ena regl !

=

;
~

<
master_source ena regl <
master_source ena reg3 <
<

<

b
b
'b
b
b

=

;

=

;
'

=

master_source ena_ regd
master_source ena_regs
mram rden dl <= 1'b0;
end
else
begin
real top_dl <= (sign_real, sign real, fft real out fft top}:
imag top dl <= [sign imag, sign imag, fft imag out fft top}:
real top dZ <= real top dl;
imag top d2 <= imag top dl;
real top d3 <= real top dZ;
imag top d3 <= imag top d2;
real top d4 <= real top d3;
imag top d4 <= imag top d3;
real top d5 <= real top d4:
imag top d5 <= imag top d4;
master source sop reg <= master source sop;
master source ena reg <= master source ena;
master source ena regl <= master source ena req;
master source ena regl2 <= master source ena regl;
master source ena reg3 <= master source ena regZl;
master source ena reg4 <= master source ena reg3;
master source ena reg5 <= master source ena reg4;
mram rden dl <= mram rden;
end

n
e

=

end

CONTINUING
. EDUCATION
DesignNews CEC CENTER

In this module we are
combining the final results

always B (posedge clk data_ out)

begin
if (reset == 1'bl)
begin
rr scaled shifted dl <= 0;
ri scaled Shlfted dl <= 0;
Ir Scaled Shlfted dz <= 0;
ri Scaled Shlfted dz <= 0;
end
else
begin
rr scaled shifted dl <= rr scaled shifted;
ri_scaled shifted dl <= ri_ scaled shifted;
rr Scaled Shlfted dz <= rr Scaled Shlfted dl;
ri scaled Shlfted dz <= ri scaled shifted | dl;
end
end

Presented by:

ROHDE&SCHWARZ

[l T
reg
reg
reg
reg
reg
reg
reg
wire

wWire
wire
wire
wire
wire
wire
wire

reg
req

Jmodule fft small th;

nput Signals

clk;

reset;

[15:0] data real in;
[15:0] data_imag in;

master sink dav;

master sink sop;

master source dav;
inv i;

// Ooutput Signals

[15:0] fft real out;
[15:0] fft imag out;
[5:0] exponent out;
master sink ena;
master SOUrce ena;
master source sop;
master source eop;

master sink ena reg;
[132:0] counter;

Examples

; Finally, parts of the test
§ bench

)
)
)
)i
t

initial
begin

data rf = Sfopen("real_input.txt","r"
data if = $fopen("imag input.txt","r"
fft rf = Sfopen("real output ver.txt"
fft if = Sfopen("imag output ver.txt"
expf = Sfopen("exponent output ver.txt");
#0 clk = 1'b0;

#0 reset = 1'bl;
4872 reset = 1'b0;
end

LEPPPFIIIIII TP iiiriiriiiiiirir/
// Clock Generation
LEPPPFIIIIII TP iiiriiriiiiiirir/
always
begin
#5 clk = 1'bl;
#5 clk = 1'b0;
end

LIPEEIIIIAETEE T I rrrriiiiiliiirirl/
// Set FFT Direction

// 0" => FFT

// '1' => IFFT

assign inv i = 1'b0;

R R R R R R R R R R RN,

integer data real in int,data imag in int,data rf,data if;
integer f£fft real out int,fft imag out int, exponent out int;
integer fft rf, fft if, expf;

SOUCATION
DesignNews CEC CENTER 19

integer rc_x;
integer ic x;
always @ (negedge clk)
begin
if (reset==1"'bl)
begin
data real in<=0;
data imag in<=0;

end
else
begin
if (master sink ena reg==1'bl)
begin
rc_ x = $fscanf(data rf,"%d",data real in int);
data real in <= data real in int;
ic x = $fscanf(data if,"%d",data imag in int);
data imag in <= data imag in int;
end
else
begin
data real in<=data real in;
data imag in<=data imag in;
end
end
end

Presented by:

ROHDE&SCHWARZ

Conclusion/Next Class

* Today we have been introduced to the history
and place of HDLs in the designh process

 We have looked at a simple tutorial example
to get a feel for the syntax

 We have “glanced” at some examples to get a

feel for what is required to design systems in
HDL

 Tomorrow we will look at the processes of
synthesis (from HDL) and layout on the fabric

CONTINUING
. EDUCATION
DesignNews CEC CENTER 20

Presented by:

ARl) ROHDE&SCHWARZ

